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Abstract 

In the world of biopharma manufacturing, batchwise unfolding techniques are commonly used to 

develop batch process models. However, these techniques result in converting the time series data 

structure from multiple rows of data with few columns (each column representing one process 

variable) to one row of data per batch with thousands of columns (each column a time point value of 

each variable). In order to model this data structure, Partial Least Squares (PLS) or other common 

techniques must be used to reduce dimensionality of the data set. However, one main drawback of 

PLS is that it is a purely data driven model and therefore requires a high number of batches to yield 

accurate predictions. PLS does not leverage mechanistic understanding which, often, has been 

developed over many decades by engineers and domain experts. Taking advantage of data 

integration and advanced modeling with AI/ML, we present the development of a different unfolding 

method in biopharma processes, using Applied Materials SmartFactory Rx® solution platform. This 

‘Expert Unfolding’ framework employs process understanding, which can unlock the use of 

mechanistic and hybrid modeling in a Science Guided Machine Learning (SGML) approach enabling 

optimization methods for enhancing process development, quality control, and increasing yield. 

Background: 

The main goal of any manufacturing industry is to produce a product within prescribed 
quality specifications. The ease with which this objective is met is directly related to the complexity 
of the product in conjunction with the ability to adequately control the way in which it is 
manufactured. Biopharmaceutical production, unlike traditional medicinal products manufactured 
using consistent chemical and physical techniques, involves biological processes with nonlinear 
dynamics, inherent batch variability and high sensitivity to minute changes in environmental 
parameters (Ündey et al., 2010). In addition, raw materials that can be extremely complex are often 
variable in composition, which can have an unpredictable and substantial impact on cellular 
metabolism (Read et al., 2010). Cellular growth and product formation in a bioreactor is recognized 
as the most complex and significant unit operation in manufacturing a biopharmaceutical and 
governs the success of the overall process. However, very few sophisticated analytical 
measurements are performed in situ and only a handful of critical parameters such as pH, dissolved 
oxygen (DO) and temperature are commonly monitored in real-time (Chopda et al., 2016).  
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The clear need to increase process understanding and control resulted in the Quality by 
Design (QbD) initiative. Soon after, the FDA realized that the advanced control required to ensure 
quality would not be possible without adequate and reliable monitoring and, as such, the Process 
Analytical Technology (PAT) initiative was born in 2004 (Izat et al., 2014). The relationship between 
product quality, cell metabolism and environmental Critical Process Parameters (CPPs) can be 
monitored closely through determination of in process Key Performance Attributes (KPAs). It is well 
understood that the ability to monitor CPPs is paramount in developing the required process 
understanding that enables the advanced process control necessary to achieve enhanced quality in 
a consistent manner (Biechele et al., 2015). However, with the variability of incoming raw materials 
as well as slight changes in seed expansion and growth conditions in addition to the limited 
monitoring available, there is a dire need to develop actionable understanding through data 
analytics and modeling.  

With the increase in PAT and advanced monitoring taking place in the industry there is now a 
growing challenge of how to make best use of the data that is generated and transform it into 
process knowledge and understanding (Marx, 2013). It has been noted that a large part of the future 
of quality improvement in biomanufacturing will be accomplished by better data analytics of the 
monitoring that is already in place making possible more advanced control (Langer, 2013). The goal 
is, therefore, to identify meaningful data that will lead to process understanding, which ultimately 
enables process control. This advanced control is based on the link between process knowledge and 
product quality that is provided through advanced data analytics and ensures a more robust overall 
process (Rios, 2014). In order to perform data analytics, the challenge of data integration from 
multiple sources must first be overcome. In many cases data is generated and stored in different 
locations based on the technology being used. Standard bioreactor data is often stored in a 
Supervisory Control and Data Acquisition (SCADA) or a Distributed Control System (DCS) while inline 
monitoring using NIR spectroscopy or online off gas analysis would be stored in another location 
and can often even be of different data types based on manufacturer software. An integration tool is 
paramount to enabling the analysis of all types of data simultaneously to build the optimal 
multivariate data analysis (MVA) models for enhanced process understanding and statistical process 
control (SPC). Data integration between multiple sensors from different manufacturers is still a large 
challenge today and is a requirement for advanced process control (Graham, 2016).  

The use of multivariate models to generate “soft sensors” where quality is inferred from 
process measurements has been in effect for a number of years, however, there is a major 
challenge in the ability to execute those models with live data and implement process change in a 
real-time manner, specifically in a manufacturing setting (Hausmann et al., 2017; Mandenius and 
Gustavsson, 2015). In addition, most biologics modeling is empirical, or data driven, which results in 
a poor ability to extrapolate beyond the data set utilized to build the models. Current focus has been 
on developing mechanistic models around typical mass balances for viable cells (Kyriakopoulos et 
al.,2018 & Yahia et al., 2021) or energy balance models using metabolic pathways (Quiroga-
Campanoa et al., 2018). These models are much better suited for extrapolation if the process were 
to shift outside of previously known conditions. However, cellular metabolism is extremely complex 
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and variation is often too difficult to predict using mechanistic models alone. Therefore, the best 
model approach is to use hybrid mechanistic-empirical models to most accurately represent the 
process being studied (Mayalu and Asada, 2014). Combining science-based models with data-based 
models in a guided approach is referred to as hybrid Science Guided Machine Learning which has 
great potential for bioprocess improvement and optimization (Sharma and Liu, 2022)    

Advanced control strategies require a platform that can integrate data from standard 
process parameters and any number of external analytical tools in order to execute models 
generated with applications such as Matlab, R or python in real-time along with MVA and predictive 
models (such as those developed using PharmaMV) and then utilize the results through control logic 
that is able to feedback into the process. In addition, the platform would need to have the capability 
of managing alerts and alarms with contextual information and ensure that the correct knowledge 
was delivered to the right individual at the ideal time. This advanced process control would need to 
be integrated in such a way as to be able to adjust set-points in existing Proportional, Integral, 
Derivative (PID) controllers that may be under local Programmable Logic (PLC) or Distributed 
Control (DCS) (Rios, 2014). Full integration of data sources and data systems utilizing a platform that 
can enable virtually any type of modeling application to execute in real-time does not currently exist 
in a manufacturing setting. 

Platform Description 
Our Applied Materials SmartFactory Rx suite of solutions brings analytics, maintenance and 

scheduling/dispatching together to optimize process and resource utilization. Deployed end to end 
across the value chain from manufacturing level to enterprise level transforms your plant to an 
agile, data-driven environment that supports intelligent decisions from shop floor to top floor, as 
shown in Figure 1. Our platform provides world-class features and algorithms for advanced real-
time process analytics including Big Data, mechanistic modeling, closed-loop and model-based 
control, real-time adaptive scheduling and rule-based dispatching, and machine learning for 
predictive & prescriptive maintenance. The SmartFactory Rx platform aligns with a number of 
pharma initiatives, such as 6 Sigma, Lean Manufacturing, QbD, PAT and Continued/Ongoing Process 
Verification.  
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Figure 1 - SmartFactory Rx Platform by Applied Materials 

SmartFactory Rx consists of four domains: Smart Process, Smart Process Development, Smart 
Maintenance, and Smart Scheduling all which inter-operate with other systems/applications from 
the manufacturing to enterprise level to enable Knowledge Management. Smart Process and Smart 
Process Development have been designed to collect data from disparate sources, aggregate, 
contextualize and analyze the data, across the value chain, from raw materials to multiple unit 
operations and to finished products, enabling advanced process monitoring and control strategy 
development for process and equipment health optimization. Smart Process interoperates with 
existing sensors, equipment, PAT analyzers, lab instrumentation, process control systems, 
Manufacturing Execution System (MES), Computerized Maintenance Management System (CMMS) 
and enterprise business applications supporting data-driven decisions.  

Unique Modeling Methodology 

Our approach is an equation-based system modeling method executed in real-time or at 
run-time using a unique strategy engine enabling integration of various data silos to yield optimal 
results. Our modeling solution technique first employs “Expert Unfolding” where specific phases of 
the batch are identified and windowed based on features that will be calculated within and across 
these windows as identified by process and equipment subject matter experts. This purpose-driven 
segmentation of the batch, seen in Figure 2, then allows for the creation of model equations that 
can be based on first principles or mechanistic interactions between parameters. These are often 
related to both equipment and process performance as well as empirical input/output machine 
learning correlations. Data can be transformed using complex mechanistic algorithms for modeling 
continuous data streams, sliced in relevant time intervals (usually no more than 10 for a given batch) 
to determine more complex statistical performance and/or analyzed using a combination of the two. 
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In contrast, ordinary batch-wise unfolding uses a regularly spaced grid of small time intervals. In 
ordinary unfolding, each independent variable (raw or soft sensor) is replaced with a collection of 
variables, one for each time interval. This results in a 2-dimensional matrix with a row for each batch 
and a column for each (sensor, time interval). If the process is long, say several days, and the time 
steps are small, say one minute, then the number of columns can be very large. Expert unfolding, on 
the other hand, creates a variable for each (sensor, window) combination. Because there is a small 
number of windows, there is not an explosion in the total number of variables. In practice, the 
partitioning into windows can be done on the values of some process variable rather than time. 

The second major advantage of Expert Unfolding is in the creation of soft sensors. The windows 
determined by the expert, because they are the natural stages of the overall process, are a more 
natural environment for defining soft sensors that are relevant in a particular window. These soft 
sensors can be based on the underlying physics, biology and chemistry of what is happening at that 
stage. With a uniform time grid, soft sensors have to be defined over the whole duration of the 
process.  

The third benefit of Expert Unfolding is the use of summary statistics. Ordinary unfolding uses the 
value of each sensor at the end of each time interval. This final value is just one of many possible 
summary statistics that can be computed over a time interval. See Figure 3 for an example of 
possible summary statistics. Again, the process windows are a more natural setting for an expert to 
decide which summary statistics are useful for each sensor in each window. Very specific statistics 
are employed in order to describe the raw data and soft sensor trajectories within the window as 
well as identify if the raw data or soft sensor traces are deviating from normal operation which 
would result in a loss of quality or reduction in yield. This Expert Unfolding and feature generation 
by application of the aforementioned statistics such as kurtosis, hit counts and quartiles etc. need 

Figure 2. Expert Unfolding Windows in Real-time Dashboard with “Golden Batch” limits 
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only be configured within the software and no coding is required. Limits for these data 
transformations, univariate statistics, first principle as well as mechanistic models, are determined 
based on statistical variation of good performance. Any deviation in performance can then be traced 
back to previously identified failure modes.  

Machine Learning algorithms are then applied to the generated Expert Unfolded batch data 
in order to predict and optimize a variety of unit operations providing prescriptive actions to 
operators at opportune times within validated limits. This SGML methodology has been 
demonstrated in a wide variety of large and small molecule pharmaceutical manufacturing 
processes specifically in bioprocessing examples such as fermenters and bioreactors where the 
models have already shown improvement in yield and quality for many top pharma companies. 
These hybrid SGML models determine if culture performance attributes are varying and predict 
whether a process change is required to maintain optimal growth and product formation while 
limiting negative by-products all within the context of the equipment operation performance. 
Figures 4 and 5 are examples of how SmartFactory Rx provides analytics visualization as part of the 
engineering interface and a web-based dashboard.  This user-based visualization enables personnel 
at every level across the organization to understand the health of the process (Figure 4) and the 
prescriptive action that needs to be taken for a specific unit operation (Figure 5) to optimize growth 
and product formation. 

Figure 3. Subset of native statistics that can be selected for feature generation to unfold batches 
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Figure 5. Dashboard example showing prescriptive actions determined by hybrid SGML optimization models 

Figure 4. Dashboard example showing high level view of a biomanufacturing process 
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In addition to visualization, automated actions can be applied with the SmartFactory Rx drag-and-
drop strategy engine (see Figure 6). These automated actions can be as extensive as: 

• Email or text message prescriptive notifications
• Integration to other alerting systems
• Service request / work order generation
• Action plans that initiate workflows for triage of events and dashboard updates for root cause

contributors and improvement tracking
• Automated update to maintenance, manufacturing and/or engineering schedules
• Control: feed forward, feed backward and closed-loop

Figure 6. Automated code free orchestration 
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Summary 
Our hybrid SGML model methodology allows for more in-depth monitoring, greater 

understanding and enables predictive control which is expected to primarily result in increased 
productivity and consistency from run to run. In general, the current ability in industry to develop 
and integrate mechanistic models in real-time is extremely limited. This platform demonstrates the 
capability to integrate multiple data types (advanced sensors, controllers) and data systems (DCS, 
Historian, CMMS, Building Management System (BMS), Laboratory Information Management 
System (LIMS)) and provides a platform to consume the data irrespective of the modeling software 
employed by the end user to generate real-time mechanistic-empirical models. The platform also 
manages alerts to reduce false alarms, which is a common critical challenge, and is capable of 
initiating workflows to immediately notify the correct individual with prescriptive actions. All these 
factors are definitive needs within the industry to advance manufacturing control capabilities. The 
Expert Unfolding along with feature engineering and multivariate modeling functionality within the 
software platform fills a current gap within the industry to develop and employ extremely complex 
mechanistic data transformations as well as fundamental relationship models based on subject 
matter expertise. Additionally, the mechanistic models can feed into advanced empirical MVA tools 
to build extremely robust predictive hybrid models. The same platform can be used for both 
equipment and process models and is extremely suited to predictive maintenance applications so 
to limit the requirement for multiple solutions and the resulting increased unnecessary 
maintenance and compromised uptime.  

Estimated time to impact:  

The estimated time to impact post deployment is almost immediate. Once SmartFactory Rx 
is installed at the manufacturing site and the equipment templates are populated and deployed to 
supervise the manufacturing process in real-time, it is used immediately to create knowledge and 
wisdom from the data and information at the site. As SmartFactory Rx is further leveraged in moving 
from a stepped process of “information only” to “automated action,” the impact to the industry 
dramatically increases. It will enable biomanufacturing companies to lower the cost of goods and 
assist them in getting their products to patients faster. Any GMP manufacturing facility should of 
course go through the due diligence of validation to ensure they are complying with governing 
regulations. This will have a time impact dependent on the level of use. However, a number of the 
top 10 Pharma companies have leveraged SmartFactory Rx to generate high return on investments 
within the first year of operation. 
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